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Resonant Frequency of Open-Ended

Cylindrical Cavity

NORMAN C. WENGER

Abstract-The TE,II mode of oscillation in an open-ended circular

cylindrical microwave cavity is analyzed. The cavity consists of a circular

wavegoide that is terminated at each end with a thin cylindrical partition

coaxial with the circular waveguide. The resonant frequency of the cavity

is computed by using Laplace transform and Wiener-Hopf techniques.

Numerical values for the resonant frequency are presented.

INTRODUCTION

M

ICROWAVE cavities have been used extensively to

measure the dielectric properties of liquids and

gases. The change in resonant frequency and cavity

Q when a material is introduced into a microwave cavity

gives a measure of the complex dielectric constant of the

material [1]. In many applications, such as in atmospheric

research, it is necessary that the cavity be open-ended so

that dynamic measurements of the dielectric properties can

be made. This requires replacing the solid end walls of the

cavity by a termination that will totally reflect the micro-

wave energy and yet present a minimal obstruction to the

flow of material through the cavity. A discussion about

various types of terminations may be found in references

[2]-[5].

Figure 1 shows a type of open-ended cavity that is fre-

quently used. It consists of a circular waveguide that is

terminated at each end with a coaxial cylindrical partition.

This partition separates a portion of the waveguide into a

coaxial waveguide plus a smaller circular waveguide that

also serves as the inner conductor for the coaxial waveguide.

The partition will act like a perfect reflector to the micro-

wave energy if the cavity dimensions and frequency are

selected so that the modes excited in the coaxial waveguide

and smaller circular waveguide are cutoff modes.
This paper presents an analysis of the TE,I1 mode of

oscillation in open-ended cavities of the type shown in Fig. 1

to determine the relation between the resonant frequency of

the cavity and the cavity dimensions. The analysis is re-

stricted to the TEOII mode since this mode of oscillation has
a very high Q and therefore is commonly used. The solution

for the resonant frequency of this mode can be easily com-

puted if the reflection coefficient of the TEO1 circular wave-

guide mode incident on the cylindrical partition is known.

The model that will be used to compute the reflection

coefficient is shown in Fig. 2. The various regions of interest

have been numbered for ease in reference. The model con-

sists of a perfectly conducting circular waveguide of radius

b and of infinite extent in the z-direction. Coaxial with the
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Fig. 1. Open-ended microwave cavity.
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Fig. 2. Cylindrical partition in waveguide.

waveguide is an infinitely thin, perfectly conducting circular

waveguide of radius a that extends over the range O< z < @.

The reflection coefficient will be computed for the case of

the TEOI mode incident from the left.

Before proceeding with the analysis, it will be instructive

to consider the various types of waves that can exist in the

different regions. It will only be necessary, however, to con-

sider the circularly symmetric TEOn modes in each region

since both the TEO1 incident mode and the model possess

circular symmetry. Thus, the field components of interest

will be the &component of the electric field and the r- and

z-components of the magnetic field. Since the electric and

magnetic fields are related by Maxwell’s equations, only

the electric field needs to be determined to specify the total

field uniquely.

WAVEGUIDE MODES

Solutions for the electric field Eo(r, z) in the various regions

of interest are [6]

E@(r,2) = J1(rlr)e–~81’ + liill(rlr)e~~l”

-t- 5 A.Jl(I’.r)e~nz Region I (la)
n=2
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Region II (lb)
‘n=l

/%(r)2) = jjcJv,(a.a)J1(8.r)
‘n=l

–Jl(~na)Nl(8nr)]e–p”z Region III (lc)

where the & B., and C. are complex amplitude constants,

and R is the reflection coefficient for the TEN mode. A time

dependence of ejwi is implicit in these equations. Since the

solutions must satisfy Maxwell’s equations, the propagation

constants &, an, and pn must satisfy the equations

~lz = koz – J712

}

(2a)
(3%2 z= rnz – koz, n>l

ffn2 = ‘Y.
2 — ~02 (2b)

~n2 = &2 _ ~02 (2C)

where ko= w/c.

It will be assumed that ko satisfies the inequalities I’1 <ko

< I’Z, ko<-rl, and ko <81 so that the TEo1 mode will propagate

in Region I, and that the TEh, n> 1 modes in Region I

and all TEOn modes in Regions II and HI will be cutoff modes.

The eigenvalues rn, Y., and & are determined by the

boundary condition that requires Ee to vanish on the per-

fectly conducting

2). Thus,

J,(rnb) = o, r,b

J1(7na) = O, -yla

surfaces r= b and r= a for z> O (see Fig.

= 3.8317, I’J = 7.0156, 00. , I’J

= (n+ l/4)r

= 3.8317, yza = 7.0156, . . . . ~~a

= (n+ l/4)7r

iV1(tina)J1(&J) – J1(&a)N1(&J) = O, . . . . &a = ‘T .
b/a – 1

SOLUTION FOR REFLECTION COEFFICIENT

The formal solution for the reflection coefficient R will

be obtained by setting up an integral equation for the

scattered electric field due to the TEO1 mode incident on the

cylindrical partition and then solving this equation by using

the Wiener-Hopf technique. The reflection coefficient can

also be determined by equating the general solutions for

the electromagnetic field at the surface z= O (see Fig. 2) and

then solving the resulting equations for the amplitudes

An, Bn, CL, and R by using a function-theoretic technique

[7], [8].

The integral equation will be formulated by employing

the Green’s function, G(r, a, z–zo), which is defined to be

the solution of the differential equation

= jcq.tot(z– zo)6(r – a) (3a)

which satisfies the boundary condition

G(b, a, .s – ZO) = O. (3b)
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Physically, the Green’s function corresponds to the O-com-

ponent of the electric field in an infinitely long circular wave-

guide of radius b which is produced by a filamentary current

loop of radius a located at z= zO. Thus it must follow that

the total electric field in the waveguide E@is given by

E@(r, z) = Jl(r’lr)e-~@12

+ ~ ‘G(r, .z,z – .zJJ~(a, zo)dzO (4)
o

where J8(a, zO)is the electric current density on the cylindrical

partition. The first term on the right in (4) corresponds to the

incident TEO1 mode, which will be defined to exist for all

values of z, and the second term corresponds to the field

produced by the induced electric current on the cylindrical

partition.

It will be convenient in the following analysis to split the

electric field Eg into two parts—an incident field E~; and a

scattered field EOS—SOtha~

Eo(r, Z) = -&i(r) Z) + Eoa(r, z)

where

Eoi(r, z) = ~l(rlr)e–!~l’.

Combining (4), (5), and (6) gives the desired

tion for the scattered electric field E#:

p.

(5)

(6)

integral equa-

E8”(r, 2) =
J

G(r, a, z – zO)JO(a, zo)dzo. (7)
—m

In going from (4) to (7), the lower limit on the integral was

changed from O to — ~ since J6(a, Zo) is zero in the range
— m <Zo<o.

Solution of Integral Equation

The solution of the integral equation for the scattered

electric field will be obtained by using Laplace transform

and Wiener-Hopf techniques [9]. Let the fimctions 8(r, L?),

~(r, a, p), and $(a, @ be the bilateral Laplace transforms

with respect to z of EO*(r, z), G(r, a, z), and Jo(a, z), respec-

tively:

s

co
8(T, ,8) = Eo’(r, z)e–6’dz (8a)

—m

s

w
S(T, a, @ = G(r, a, z)e–@zdz (8b)

—cc

J

m

$(a, 8) = Jo(U, Z)d’zdz. (8c)
—m

In order to make all the Laplace transforms exist in a

common region in the complex p-plane, the propagation
constant @l will be made complex. This is equivalent to

introducing an energy loss mechanism into the medium

interior to the waveguide. Let P1= @l’—jpl” where PI’> O and

B/’ >0. In the final solution PI’ will be set equal to zero to
recover the solution for the Iossless case.

The functions 8 and $ are, at this point, ~known since

E# and J@are unknown. However, it can be shown that &
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is analytic in the strip —Bl” < Gtep</%” and that $ is analytic
in the region Rep> —PI”.

The transform of the Green’s function can be easily com-

puted by first transforming the basic equation and boundary

condition for the Green’s function given by (3a) and (3b)

and then solving the transformed equations with the result

“[
J,(M)N,(M) – ~l(hj~l(~b)

1
J,(Au) r 2 a (9b)

JI(M)

where k= (k02+@2)112.

Sinces is an even function of k, either branch of h can be

selected. It can be shown that s is analytic in the strip

–/?{’ <Rep< fI{’.
The Laplace transform of the integral equation (7) for the

scattered electric field is given by

8(7-,i?) = $j(T,a, LO$(aj6) (lo)

where the faltung theorem has been used to take the trans-

form of the integral. It will be convenient to express the

transform of the scattered electric field & as the sum of two

single-sided transforms ~+(r, @ and &–(r, /3), where

sm

8+(?’, /3) = ~ Ee’(r, z)e–~’dz (ha)

So
8-(T, p) = E,g8(T,z)e–~’dz. (llb)

—m

The function 8- is, at this point, unknown. The fimction

&+, however, can be computed at the radius r= u by using

the fact that the scattered electric field at r= a, for z> O,

must simply be the negative of the incident electric field

since the total electric field must be zero to satisfy the proper

boundary condition. Using the expression for the incident

field given by (6) gives

(12)

The transform of the incident field is defined only in the

region Rep> —~~’.

Combining the result for &+ with (8a), (10), and (11)

yields a form for the transformed integral equation that can

be solved by using the Wiener-Hopf technique:

J~(r,a)
&–(a, @ –

B + ml
= S(a, a, B)$(a, 6). (13)

It should be noted that when the previous equations were

combined to obtain (13), the radius r had to be set equal to

a in each of the equations since &+ could be computed only

at r=a.

Equation (13) can be solved for 8– if the transformed

Green’s function $ can be decomposed into the Wiener-

Hopf factors $+ and $– so that $= $+/~–, where $+ is

analytic and nonzero for @e@> —@l” and $– is analytic and

nonzero for Rep <P;’. This step allows (13) to be rewritten

in the form

8-(cz,/3)$-(a, a, P) + Jl(rla)
$-(a)a, –jpl) – $-(a,a, P)

o + jh

J,(r,a)$-(a, a, –jdl)—— + S+(a, a, B)9(a, B). (14)
@+ ml

The left side of (14) is analytic for Rep <I?{’ and the right

side is analytic for @e@> —@/’. The equality holds only in

the strip –D;’ < 6ie@<6/’,

A fimction $(B) that is analytic everywhere in the finite

compIex ~-plane can be defined from (14), where $(p) is

equal to the left side of (14) for 6ie~ < –B]”, to the right

side for (lleo > PI”, and to either side in the strip —pi’ < mefl

<A”. It can be shown that T(P) approaches zero as p+ w.

Consequently, S(B) must be zero everywhere since zero is

the only function that is analytic everywhere and vanishes

at infinity (Liouville’s theorem). Since $(p) is zero, each side

of (14) must also be zero. Thus,

J,(r,a) [$-(a) a, –.jpI) – $-(a, a, P) ] ~15a)
&-(a, p) = –

S-(a, a, P) (P + jpl)

Jl(rla)$-(a, a, –Jk)
9(U, P) = –

S+(a) a, P)(P+ i%) “
(15b)

The conditions that have been specified for 9+ and $- do

not determine this pair of functions uniquely since both $j+

and ~ can be multiplied by any function p(/3) that is

analytic and nonzero everywhere in the finite @-plane to

yield a new pair of functions that will satisfy all the original

conditions. Any such pair of functions when combined with

(15a) and (15b) will yield a solution for the scattered electric

field which satisfies all the conditions imposed on the field

up to this point.

The remaining boundary condition that must be imposed

is commonly called the edge condition [10]. The edge condi-

tion requires the total electric field Eo when evaluated at

r= a to be of the order Z112as z-O, and the current density

J.?to be of the order .z_l/2 as z+O. These conditions require

$+ and $- to be of the order P’12 and /3’[2, respectively, as

l~]+m.

Wiener-Hopf Factors of Green’s Function

The transformed Green’s function evaluated at r= a is

given by

T Jl(ha)
$(a, a, L?) = j.OKOa— ————

2 J,(M))

, [JI(Ab)IV,(Xa) - Jan,] (16)

where k= (ko2+p2)l’2 [see (9)]. The decomposition of $ into

the ratio of $+ to $– is best carried out by expressing $ in
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the form of an infinite product [11]. Since s has simple

zeros at A= f T. and A= ~ 8., simple poles at ~= + r., and

is equal to

it can be expressed in the infinite product form

S(a, a, 0)

–jw/.Loa——
2

The expression for s can be put into a more useful form by

reintroducing the parameters @., a., and ~. from (2a), (2 b),

and (2c), respectively. Thus,

Each of the infinite products in (17) can be easily factored

into the product of two infinite products so that one infinite

product is analytic and nonzero in the region @efl <p{’ and
the other is analytic and nonzero in the region GteD> –Dl”.

The result of this operation allows $+ and ~- to be easily

identified as

(%?9’-’””I!(?)e-’b’”r
S-(U, a, B)

P(D)

(%9’””=!N3e’b’n”.
Q(~)f+’n”Q(~)e’(ha)’n”‘(p)”

n

The quantity

+jupoa

—— (1– a2/b2)
~

(18a)

(18b)

has been arbitrarily associated with the factor s+. The expo-

nential terms in (18a) and ( 18b) were introduced to ensure

that the infinite products will converge. By replacing the

infinite products in (18) with their asymptotic forms for

large @ [7] it can be shown that a suitable choice for p(p)

which gives S+ and S– the proper asymptotic forms is

L (i&)-:’n(iA)]
p(p) = exp pin

Scattered Electric Field

The scattered electric field evaluated at r= a can now be

computed by inverting the transformed field &:

EO’(a, 2) = –+ s&(a, p)e~”d~.
27r) c

(19)

The inversion contour C must be located in the strip

–@I” < Oles<fh” as shown in Fig. 3 since this is the only

common region in the ~-plane where all the transforms are

analytic.

The transformed scattered field &(a, p) is the sum of &+(a, @

given by (12) and &-(a, D) given by (15a). Thus,

J,(r,a)s-(a, a, –.i61)
E6.8(a, 2) = – & s%c (P+ WS-(f3 a, 6)

e~%?/3. (20)

To evaluate the field for z<O, the contour C can be closed

in the right half ~-plane with a semicircle of infinite radius.

It can be easily shown that the integral over this semicircle

is zero. Thus the integral over the original contour C must

equal —2rj times the sum of the residues of the poles of

the integrand in the right half ~-plane. The integrand has

poles in this half plane at @=j~l and at B= I% (n> 1) owing

to the zeros of S–. Performing the integration gives

J1(rla)y-(f3, a, ~M ‘id,.

Eo’(a, 2) = +

2J31 ~- (a, a,@
B=ifll

Jl(rla)s-(a, a, –-W

+5 e~”z z <0. (21)

‘=’ (Pn + W ~- (a, a, @
B=P,,

The total electric field in the region z<O can now be ob-

tained by adding the incident field given by (6) to the scat-

tered field given by (21) with the result

Eo(r, z) = J1(rlr)e–~~l’

+
$7(a, a, –2BI)

J1(I’lr)e~~l”

2jf?l ~~ (a, a, D)
6=j0’1

+2
%=2

$(a, a, –j&)J1(rla)

(h+ .W f- (a, a, d)
O=L+,,

Jl(r.r)
ehs

J,(I’na)

z <o. (22)
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Fig. 3. Complex &plane.

In obtaining (22), the amplitude factor of each mode in the

scattered field was multiplied by ,L(r.r)/J@.a) to reintroduce

the radial dependence of the modes.

If (22) is compared with the solution for the field in the

region z< O given by (1a), the reflection coefficient R of the

TEO, mode can be easily identified as

R=
S-(a, a, –.MI)

(23)

zj81 ~- (a, a, 6)

6=M1

Combining (23) with the expression for $- given by (18b)

allows R to be put into the form

‘=”+2[z’an-’(:)-z’an-l(:)
– ~~ tan-’ (b)]

P.

+’[%n(i%)-’:’n( :z)l ’25)

The terms in the summations are recognized as the phases of

the various infinite products. The last term corresponds to

twice the phase of p(–j@.

Numerical values for @ were obtained on an IBM 7094

computer. The first 100 terms in each of the infinite series

were retained. By using an integral technique it was esti-

mated that truncating the series at 100 terms introduces an

error in d of less than 0.01 radian. The numerical results

are shown in Figs. 4(a) and (b) in the form of curves of

@ against k,b for typical values of the parameter b/a.

The range of kob is bounded. The lower limit is deter-

mined by the condition that kob must exceed I’lb, which

has the constant value 3.8317, so that the TEu mode

in Region I can propagate. The upper limit is determined by

the condition that kob must be less than the smaller of ?lb
or 81b.This condition ensures that neither the TEo1 mode in

Region II nor the TEO1 mode in Region 111 will propagate.

The values of -yIb and ~lb are dependent on the parameter

b/a. It can be shown that, if b/a is less than 1.831, ~lb
<7.0153 <~lb, and if b/a exceeds 1.831, ~lb<7.0153 <Ylb.

Ii ~ y’)e+’”””~(a”--n~y’’’””””Ii (p”;~pl)e’’’’’-”’’””P(-~Bl)
R = – e–2jBlb\. ‘=2 .

n,= 1

X77’’’’””= !xan;~p’)e-’’’a’”= Q(p”i~pl)e-’’l(a)anTpT~@l)l) “ ’24)

From this point on, the propagation constant PI will be

regarded as real so that the subsequent results will apply

for the case where there are no losses.

A careful examination of the equation for R shows that

apart from the first term —exp [ —2jf11b/m], which has unit
modulus, the expression for R is simply the ratio of two

complex numbers, with the numerator as the complex con-

jugate of the denominator. Thus it must follow that I RI =1.

This result should be expected. The TEo1 mode incident

on the coaxial cylindrical partition shown in Fig. 2 must be

perfectly reflected since it has been assumed that all the TEo~

modes in Regions II and III are cutoff and that there are no

losses. Thus the reflected TEOI mode must have the same

amplitude as the incident mode.

The argument or phase of R, which will be denoted by 4,

must equal twice the phase of the numerator in (24), since

the numerator is the complex conjugate of the denominator,

plus r, which is a result of the initial minus sign. Thus,

For the case where b/a= 1.831, the TEu modes in Regions

II and III have identical low-frequency cutoff points that

correspond to the values Tlb=Jlb=7.0153.
The numerical results for @ show that at the lower limit

of kob, the value of@ is equal to r for all values of the param-
eter b/a. Thus, at the lower limit of kob, the cylindrical

partition reflects the incident TEOI mode as if a perfectly

conducting surface spanned the waveguide cross section

at z= O (see Fig. 2) since a perfectly conducting surface

gives a reflection coefficient of unit modulus and argument

~. As kob increases, the incident TEO1 mode is still perfectly
reflected since the modulus of R remains at unity. However,

since the phase of the reflection coefficient decreases with

increasing kob, it appears as though the position of the per-

fectly conducting surface moves. Thus the cylindrical parti-

tion acts like a “virtual” perfectly conducting surface that

spans the entire waveguide cross section whose position is

a function of kob and the parameter b/u.
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Fig. 4. Phase of reflection coefficient against dimensionless
frequency for constant values of radius ratio.

RESONANT FREQUENCY OF CAVITY

An open-ended cavity can be constructed by placing two

cylindrical partitions of finite length within a circular wave-

guide as shown in Fig. 5. The partitions need only be long

compared with I/al and l/pl for the formula for the reflec-

tion coefficient of the infinitely long partition to apply. To

determine the conditions for resonance in the cavity, con-

sider the electric field in the region between the partitions

to be the sum of TEOI modes propagating in the positive and

negative z-directions. Thus,

Eo(r, 2) = AJ1(rl~)e–~’l’ + BJ1(rl~)ejfllz.

At z= O, the ratio of the reflected wave BJ@lr) to the inci-
dent wave #@’lr-) must equal the reflection coefficient R.

Similarly, at z= —L, the ratio of the reflected wave

Al@’lr)e~~l~ to the incident wave B.l@lr)e-~@’L must also

equal R. Since R is equal to e~@,these conditions are simply

B
_ = e~~

I I
1 -z

z--L Z“o

Fig. 5. Model of open-ended cavity.
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Fig. 6. Ratio of cavity length to radius against dimensionless reso-
nant frequency for constant values of radius ratio.
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nant frequency for radius ratio of 2.082.A
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and

A@rL
= ei$.

Be–A5’lL

It can be easily shown that, if there is to be a nontrivial

solution for amplitudes A and B, @ and L must be related

by the equation

~~D15— eZ~b–ifi15= ()

which has the solution

B, L=c#. (26)

The required spacing between the partitions to resonate

the TEO1l mode can be found by solving (26) for L, using

the values of@ given in Figs. 4(a) and 4(b). The spacing for

the TEOI. resonant mode can be found by simply adding

(n– l)27r to @before soIving for L.

The numerical results for the TEO1l mode are shown in

Figs. 6(a), 6(b), and (7) in the form of curves of L/b against

hb for typical values of the parameter b/a. The range of

resonant frequencies over which the cavity can be tuned by

varying L/b is a strong function of b/a. The value b/a= 1.831
gives the maximum tuning range.

The numerical results shown in Fig. 7 are for b/a= 2.082.

This value is commonly used in practice since it corresponds

to locating the cylindrical partition at the radius where the

electric field of the TEO1 mode has its maximum intensity,

i.e., J@lr) has a maximum at r= b/2.082. This value of b/u

was used in the design of the cavity shown in Fig. 1. The

data point in Fig. 7 corresponding to the measured values

of L/b and kob for this cavity indicates that the theoretical

and experimental results are in good agreement.

REFERENCES

[1] M. Sucherand J. Fox, Handbook of Microwave Measurements, 3rd
cd., vol. 2. New York: Interscience, 1963, ch. 9.

[2] A. W. Adey, “Microwave refractometer cavity design,” Canad.

J. Tech., vol. 34, pp. 519-521, March 1957.
[3] M. C. Thompson, Jr., F. E. Freethey, and D. M. Waters, “End

plate modifications of X-band TEOU cavity resonators,” IRE

Trans. on Microwave Theory and Techniques (Correspondence),

vol. MTT-7, pp. 388–389, July 1959.

[4] D. C. Thorn and A. W. Straiton, “Design of open-ended micro-
wave resonant cavities, “ ibid., pp. 389–390.

[5] R. O. Gilmer and D. C. Thorn, “Some design criteria for open-
ended microwave cavities:’ University of New Mexico, Albu-
querque, N. Mex., Tech. Rept. EE-65, June 1962.

[6] S. Ramo and J. R. Whinnery, Fields and Waves in Modern Radio,
2nd ed. New York: Wiley, 1953, pp. 364-366, 374-379.

[7] R. E. Collin, FieidTheory of Guided Waves. New York: McGraw-
Hill, 1960, ch. 10.

[8] R. Mittra and C. P. Bates, “An alternative approach to the solu-
tion of a class of Wiener-Hopf and related problems,” University
of Illinois, Urbana, Ill., Antenna Lab. Rept. 65-21, February 1966.

[9] B. Noble, Methods Based on the Wierrer-Hopf Techniqae for the
Solution of Partial Differential Equations. New York: Pergamon,
1958.

[10] A. E. Heins and S. Silver, “The edge conditions and field repre-
sentation theorems in the theory of electromagnetic diffraction,”
Proc. Cam. PhiI. Sot., vol. 51, pp. 149–161, January 1955.

[11 ] For an example of this technique see P. M. Morse and H. Fesh-
bach, Methods of Theoretical Physics, vol. 1. New York: McGraw-
Hill, 1953, pp. 382-385.

Theory of Direct-Coupled-Cavity Filters

RALPH LEVY, SENIOR MEMBER, IEEE

Abstract-A new theory is presented for the design of direct-coupled-

cavity filters in transmission line or waveguide. It is shown that for a

specified range of parameters the insertion-loss characteristic of these til-

ters in the case of Chebyshev equal-ripple characteristic is given very

accurately by tbe formula

g=l+h2T.2[3‘i”(”:)]
OJ SiU e@’

where h defines the ripple level, Z’. is the first-kind Chebyshev polynomial

of degree n, CJ/CJO is normalized frequency, and tIO’ is an angle propor-

tional to the bandwidth of a distributed lowpass prototype filter. The ele-
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ment vaks of the direct-coupled filter are related directly to the step

impedances of the prototype whose values have been tabulated. The theory

gives close agreement with computed data over a range of parameters as

specified by a very simple formula. The design technique is convenient for

practical applications.

INTRODUCTION

A

NEW TREATMENT of the classic problem of direct-

coupled microwave filter design is presented. These

filters consist of TEM transmission line or wave-

guide cavities coupled either by series capacitances or by

shunt inductances, as shown in Figs. l(a) and l(b), respec-

tively. It will be assumed that the waveguide or transmission

line is of uniform impedance. The more general case is

perhaps of less importance for economic reasons, but it has

been discussed by Young [1], and the theory presented here

may be extended as described by th~t author.


