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Resonant Frequency of Open-Ended
Cylindrical Cavity

NORMAN C. WENGER

Abstract—The TEq; mode of oscillation in an open-ended circular
cylindrical microwave cavity is analyzed. The cavity consists of a circular
waveguide that is terminated at each end with a thin cylindrical partition
coaxial with the circular waveguide. The resonant frequency of the cavity
is computed by using Laplace transform and Wiener-Hopf techniques.
Numerical values for the resonant frequency are presented.

INTRODUCTION

ICROWAVE cavities have been used extensively to
i %’ !S measure the dielectric properties of liquids and

gases. The change in resonant frequency and cavity
Q when a material is introduced into a microwave cavity
gives a measure of the complex dielectric constant of the
material [1]. In many applications, such as in atmospheric
research, it is necessary that the cavity be open-ended so
that dynamic measurements of the diclectric properties can
be made. This requires replacing the solid end walls of the
cavity by a termination that will totally reflect the micro-
wave energy and yet present a minimal obstruction to the
flow of material through the cavity. A discussion about
various types of terminations may be found in references
[2]-[5].

Figure 1 shows a type of open-ended cavity that is fre-
quently used. It consists of a circular waveguide that is
terminated at each end with a coaxial cylindrical partition.
This partition separates a portion of the waveguide into a
coaxial waveguide plus a smaller circular waveguide that
also serves as the inner conductor for the coaxial waveguide.
The partition will act like a perfect reflector to the micro-
wave energy if the cavity dimensions and frequency are
selected so that the modes excited in the coaxial waveguide
and smaller circular waveguide are cutoff modes.

This paper presents an analysis of the TEy; mode of
oscillation in open-ended cavities of the type shown in Fig. 1
to determine the relation between the resonant frequency of
the cavity and the cavity dimensions. The analysis is re-
stricted to the TEo;; mode since this mode of oscillation bas
a very high Q and therefore is commonly used. The solution
for the resonant frequency of this mode can be easily com-
puted if the reflection coefficient of the TEq; circular wave-
guide mode incident on the cylindrical partition is known.

The model that will be used to compute the reflection
coefficient is shown in Fig. 2. The various regions of interest
have been numbered for ease in reference. The model con-
sists of a perfectly conducting circular waveguide of radius
b and of infinite extent in the z-direction. Coaxial with the
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Fig. 1.

Open-ended microwave cavity.

Region 1

z=0

Fig. 2. Cylindrical partition in waveguide.

waveguide is an infinitely thin, perfectly conducting circular
waveguide of radius a that extends over the range 0<z< .
The reflection coefficient will be computed for the case of
the TE;; mode incident from the left.

Before proceeding with the analysis, it will be instructive
to consider the various types of waves that can exist in the
different regions. It will only be necessary, however, to con-
sider the circularly symmetric TE,, modes in each region
since both the TE, incident mode and the model possess
circular symmetry. Thus, the field components of interest
will be the -component of the electric field and the - and
z-components of the magnetic field. Since the electric and
magnetic fields are related by Maxwell’s equations, only
the electric field needs to be determined to specify the total
field uniquely.

W AVEGUIDE MODES

Solutions for the electric field E(r, z) in the various regions
of interest are [6]

Eo(r, 2) = J1(Tyr)e=B12 + RJ (T'yr)eirz

+ D, A J(Tur)efrs Region I (1a)

n=2
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Ey(r,2) = > BuJi(yar)e—=»* Region IT

n=1

(1b)

Ey(r, 2) = i Co[N1(8,a)T 1(8.7)

ne=1

— J1(8,0)N(8,7) Je** Region III (lc)

where the A4,, B,, and C, are complex amplitude constants,
and R is the reflection coefficient for the TEq; mode. A time
dependence of e#* is implicit in these equations. Since the
solutions must satisfy Maxwell’s equations, the propagation
constants 8,, a,, and p, must satisfy the equations

ﬁ 2 = ko2 — T2

1 0 1 } @a)
67;2 = Pn2 - k027 n > 1
a,? = ya? — ko? (2b)
pn? = 8,2 — k¢? (2¢)

where ko=w/c.

It will be assumed that k, satisfies the inequalities 'y <k,
< Ty, ko<71, and ko< 51 so that the TEy mode will propagate
in Region I, and that the TE,,, n>1 modes in Region I
and all TE,, modes in Regions II and 111 will be cutoff modes.

The cigenvalues T, v., and §, are determined by the
boundary condition that requires Fy to vanish on the per-
fectly conducting surfaces r=>b and r=a for z>0 (see Fig.
2). Thus,

J1(I‘nb) = O, Plb = 38317, sz = 70156, tt oty Pnb
~ n+ 1/4)=x
J1(yna) = 0, via = 3.8317, vsa = 7.0156, - - -, vaa
~ n+ 1/~
nmw
Nl(éna)Jl(Bnb) ——Jl(éna)Nl(Bnb) = 0, Tty 67,(1 = .
b/a — 1

SOLUTION FOR REFLECTION COEFFICIENT

The formal solution for the reflection coefficient R will
be obtained by setting up an integral equation for the
scattered electric field due to the TEy mode incident on the
cylindrical partition and then solving this equation by using
the Wiener-Hopf technique. The reflection coefficient can
also be determined by equating the general solutions for
the electromagnetic field at the surface z=0 (see Fig. 2) and
then solving the resulting equations for the amplitudes
Ay, B., C,, and R by using a function-theoretic technique
[71, 18]

The integral equation will be formulated by employing
the Green’s function, G(r, a, z—z,), which is defined to be
the solution of the differential equation

0°G 1 o8¢ G 1
4+ (W - —)G
or? r or 9z r?

= Joud(z — 20)0(r — a) (3a)

which satisfies the boundary condition

G, a,z — z9) = 0. (3b)
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Physically, the Green’s function corresponds to the §-com-
ponent of the electric field in an infinitely long circular wave-
guide of radius b which is produced by a filamentary current
loop of radius @ located at z=z, Thus it must follow that
the total electric field in the waveguide E; is given by

Eo(r, 2) = J(Tyr)e 712
+ f G(r, 2,2 — 20)Jo(a, 20)dzo 4)
0

where Ji(a, z,) is the electric current density on the cylindrical
partition. The first term on the right in (4) corresponds to the
incident TE,; mode, which will be defined to exist for all
values of z, and the second term corresponds to the field
produced by the induced electric current on the cylindrical
partition.

It will be convenient in the following analysis to split the
electric field E, into two parts—an incident field Es* and a
scattered field Ey*—so that

Ey(r, 2) = Eg'(r, 2) + Eg(r, 2) (5)
where
Eyi(r, 2) = J(I'1r)e— %12, (6)

Combining (4), (5), and (6) gives the desired integral equa-
tion for the scattered electric field Eg*:

Egp(r,z) = f wG(r, a, z — zo)Jola, ze)dzo. )

In going from (4) to (7), the lower limit on the integral was
changed from 0 to — = since Jy(a, zo) is zero in the range
— o0 <z9<0.

Solution of Integral Equation

The solution of the integral equation for the scattered
electric field will be obtained by using Laplace transform
and Wiener-Hopf techniques [9]. Let the functions &(r, 6),
S(r, a, B), and J(a, B) be the bilateral Laplace transforms
with respect to z of Eg*(r, 2), G(r, a, z), and Jy(a, z), respec-
tively:

&(r, B) = f "B (r, etz (3a)
5,08 = [ "G, a, 2)opede (3b)
s@8) = [ " Ta(a, 2)epede. (80)

In order to make all the Laplace transforms exist in a
common region in the complex g-plane, the propagation
constant 8; will be made complex. This is equivalent to
introducing an energy loss mechanism into the medium
interior to the waveguide. Let 81=31—jB:" where ;>0 and
B1>0. In the final solution 8, will be set equal to zero to
recover the solution for the lossless case.

The functions & and g are, at this point, unknown since
Ep# and J, are unknown. However, it can be shown that &
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is analytic in the strip — B, <®eB<8:,” and that g is analytic
in the region ®Re> —B1".

The transform of the Green’s function can be easily com-
puted by first transforming the basic equation and boundary
condition for the Green’s function given by (3a) and (3b)
and then solving the transformed equations with the result

S(r, a, B) = jupma g
.|:J1()\b)N1(>\a) — Ji(Aa) N1 (\b)
T1(ND)

]Jl()\r) r<a (9a)

S(r, a, f) = jupea —’;—

7700) :' Jilda) r>a (9b)

where A= (k,2+B82)\/2,

Since G is an even function of A, either branch of A can be
selected. It can be shown that G is analytic in the strip
—‘31” < (Re,@<;81”.

The Laplace transform of the integral equation (7) for the
scattered electric field is given by

8(7'7 B) = 9(7', a, ﬁ)g(a; ﬁ)

where the faltung theorem has been used to take the trans-
form of the integral. It will be convenient to express the
transform of the scattered electric field & as the sum of two
single-sided transforms &*(z, 8) and &(r, 8), where

(10)

&H(r, B) = wao”(T, z)e~fdz (11a)
0

0
&(r,B) = f By (r, 2)ePdz. (11b)

The function &~ is, at this point, unknown. The function
&+, however, can be computed at the radius 7=a by using
the fact that the scattered electric field at r=a, for z>0,
must simply be the negative of the incident electric field
since the total electric ficld must be zero to satisfy the proper
boundary condition. Using the expression for the incident
field given by (6) gives

J 1(F1a)
B+ 781
The transform of the incident field is defined only in the
region ®ef> —p:".

Combining the result for &+ with (8a), (10), and (11)
yields a form for the transformed integral equation that can
be solved by using the Wiener-Hopf technique:

v] 1(P1(l)

B+ b1
It should be noted that when the previous equations were
combined to obtain (13), the radius » had to be set equal to

a in each of the equations since §+ could be computed only
atr=a.

&a, B) = — (12)

&(a, B) — = G(a, a, B)g(a, B). (13)
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Equation (13) can be solved for &~ if the transformed
Green’s function G can be decomposed into the Wiener-
Hopf factors G+ and G~ so that g=gt+/G—, where G* is
analytic and nonzero for Ref> —g,” and G~ is analytic and
nonzero for Ref<B,". This step allows (13) to be rewritten
in the form

9—((1, a, —.7181) - 9_(0': a, ﬁ)
B+ 761

8_(00 :3)9—(0” a, ﬁ) + Jl(Pla)

Jl(Fla)9—<a; a, —.7,81) T
= a, a a .
5+ 48, + G*(a, a, £)J(a, B)
The left side of (14) is analytic for ®ef< 8, and the right
side is analytic for ®Reg> —p,". The equality holds only in
the strip —8:" <ReB<B,”.

A function F(8) that is analytic everywhere in the finite
complex S-plane can be defined from (14), where F(8) is
equal to the left side of (14) for ReB< —B,”, to the right
side for ReB>pB1", and to either side in the strip — 8,/ < Rep
<B,”. It can be shown that F(8) approaches zero as g— .
Consequently, $(8) must be zero everywhere since zero is
the only function that is analytic everywhere and vanishes
at infinity (Liouville’s theorem). Since F(g) is zero, each side
of (14) must also be zero. Thus,

J1(Twa) [§~(a, @, —jB) — G (a, a, B)]

S(a, a, B)(8 + jB)

_ J1(Twa)G(a, a, —jB1) )
Gt(a, a, B)(B + 78

The conditions that have been specified for g+ and g~ do
not determine this pair of functions uniquely since both g+
and G~ can be multiplied by any function p(8) that is
analytic and nonzero everywhere in the finite g-plane to
yield a new pair of functions that will satisfy all the original
conditions. Any such pair of functions when combined with
(15a) and (15b) will yield a solution for the scattered electric
field which satisfies all the conditions imposed on the field
up to this point.

The remaining boundary condition that must be imposed
is commonly called the edge condition [10]. The edge condi-
tion requires the total electric field E, when evaluated at
r=a to be of the order z'/2 as z—0, and the current density
Ji to be of the order z1/2 ag z—0. These conditions require
G*+ and G~ to be of the order 8~/2 and ', respectively, as

8] —c.

(14)

8—(a7 18) = - (153')

I(a, B) = (15b)

Wiener-Hopf Factors of Green’s Function
The transformed Green’s function evaluated at r=a is
given by
. T Ji(Aa)
a, a, ) = a—
9( 3 ) Jwpo 2 7. ()\b)

1) N1(Aa) — Ji(Aa) N1 (AD)]

(16)

where A= (k282" [see (9)]. The decomposition of g into
the ratio of G+ to G~ is best carried out by expressing G in
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the form of an infinite product [11]. Since G has simple
zeros at A= +v, and A= +4,, simple poles at A= +T',, and
is equal to

_j Wiol

(1 —a/b?) at \ =0,

it can be expressed in the infinite product form
S(a, g, 6)
. 10210 -50)
_ —];uoa (1 _ f) - oo’vn2 n=1)\2 8,2
1L <1 - rn2>
The expression for G can be put into a more useful form by

reintroducing the parameters 8,, a,, and p, from (2a), (2b),
and (2c), respectively. Thus,

G(a, a, B)
© anZ_‘BZ an_ﬁ2
_ Hjwua (1__(1_2) g( Yn? > 1< 8,° >
2 b2 B2+6,* Bn2—pB?
< F12 ) g < I‘n2 >

Each of the infinite products in (17) can be easily factored
into the product of two infinite products so that one infinite
product is analytic and nonzero in the region ®Re8 <8, and
the other is analytic and nonzero in the region ®e8> —g,".
The result of this operation allows G+ and G~ to be easily

identified as
+jwuea (1 a2>
2 b2

ﬁ(amtﬁ)e_ﬂm I <pn+ﬁ>

n=1 671,

<B+j61 >e—5”/" i <6n+ﬁ>e_ﬁb/m

Tw

s

3
8!!

- (17)

9+(a; a, B) =

e—ﬁ (b—a) /nw

p(8) (18a)

G (a,a,8)

B—ib1 % [ BB
T \pBblm — )pBb/nm
< Pl >e nI=I2 < Pn >e
= p(8).

11 (an_6>eﬁa/n1r 11 <p”~ >eﬁ(b—a)/n1r

n=1 Yn n=1 6n

(18b)

™

The quantity

+j Wiod

(1 — a?/b?)

&

has been arbitrarily associated with the factor G+. The expo-
nential terms in (18a) and (18b) were introduced to ensure
that the infinite products will converge. By replacing the
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infinite products in (18) with their asymptotic forms for

large 8 [7] it can be shown that a suitable choice for p(8)
which gives g+ and G~ the proper asymptotic forms is

a ) 8b b )
——1In < i|
b—a T b—a
Scattered Electric Field

The scattered electric field evaluated at r=a can now be
computed by inverting the transformed field &:

p(B) = exp E? In <

1
B9 =5 f &(a, B)eSdp. (19)
C

The inversion contour C must be located in the strip
—B/'<ReB<By" as shown in Fig. 3 since this is the only
common region in the g-plane where all the transforms are
analytic.

The transformed scattered field &(a, 8) is the sum of §*(a, 8)
given by (12) and §(a, 8) given by (15a). Thus,

=)
275 J ¢

To evaluate the field for z<0, the contour C can be closed
in the right half g-plane with a semicircle of infinite radius.
It can be easily shown that the integral over this semicircle
is zero. Thus the integral over the original contour C must
equal —27j times the sum of the residues of the poles of
the integrand in the right half g-plane. The integrand has
poles in this half plane at 8=3; and at =g, (n>1) owing
to the zeros of §—. Performing the integration gives

J1(T10)G(a, a, —jB1)

- ef=dg.
(B + ]Bl)g_(a’, a, B)

Ey(a,2) = — (20)

J1(Tha)§~ ]
e = + LG OB)

9; 39‘( )
Jﬂl—ég a;a:ﬁ

B==jB1

" Z"’: J1(T1a)G (a, a, —jB1)

n=2

efre 7z < 0. (21)

Ba+ 3805 (0,0, 8)
n —a, a,
Y 58 ot

The total electric field in the region z<0 can now be ob-
tained by adding the incident field given by (6) to the scat-
tered field given by (21) with the result

Eo(r, 2) = J1(T1r)e 1

ga—g((-l’ L
2381 —BE (a,a,B) i
n i S (a, a, —jB1)J (1) J1(Twr) g
=2 . 68— Jl(I‘,,a)
(Bn + ]B) - (a) a, 18)
B BB
z2< 0. (22)
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Fig. 3. Complex g-plane.

In obtaining (22), the amplitude factor of each mode in the
scattered field was multiplied by Jy(T',7)/Jy(T»a) to reintroduce
the radial dependence of the modes.

If (22) is compared with the solution for the field in the
region z<0 given by (la), the reflection coefficient R of the
TE, mode can be easily identified as

R = _(a a, —jB1) . (23)

2]5 17— (a a, B)

B=ib1

Combining (23) with the expression for g~ given by (18b)
allows R to be put into the form

n=1

[

n="

R = — ¢—2Bbir
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o = 1r+2|:2tan—1(6n>

% ()
(9]
w22 (1) - 2 ()] e

The terms in the summations are recognized as the phases of
the various infinite products. The last term corresponds to
twice the phase of p(—jB1).

Numerical values for ¢ were obtained on an IBM 7094
computer. The first 100 terms in each of the infinite series
were retained. By using an integral technique it was esti-
mated that truncating the series at 100 terms introduces an
error in ¢ of less than 0.01 radian. The numerical results
are shown in Figs. 4(a) and (b) in the form of curves of
¢ against kob for typical values of the parameter b/a.
The range of k¢ is bounded. The lower limit is deter-
mined by the condition that kb must exceed I'ip, which
has the constant value 3.8317, so that the TE, mode
in Region I can propagate. The upper limit is determined by
the condition that k¢b must be less than the smaller of v:b
or §:b. This condition ensures that neither the TE,; mode in
Region II nor the TEy; mode in Region IIT will propagate.
The values of v.b and 8,5 are dependent on the parameter
b/a. It can be shown that, if b/a is less than 1.831, v1b
<7.0153<68:b, and if b/a exceeds 1.831, 8:6<7.0153<1b.

on

n=1

I <ﬁ'n + .7.81> S ibin ﬁ <an ; j61> gibraln ﬂ (Pn - jﬁ1> 100> Inmp (g

(24

i

.761)
T

From this point on, the propagation constant 8; will be
regarded as real so that the subsequent results will apply
for the case where there are no losses.

A careful examination of the equation for R shows that
apart from the first term —exp|—2j8:6/x], which has unit
modulus, the expression for R is simply the ratio of two
complex numbers, with the numerator as the complex con-
jugate of the denominator. Thus it must follow that |R| =1.

This result should be expected. The TE, mode incident
on the coaxial cylindrical partition shown in Fig. 2 must be
perfectly reflected since it has been assumed that all the TE,
modes in Regions II and III are cutoff and that there are no
losses. Thus the reflected TE,; mode must have the same
amplitude as the incident mode.

The argument or phase of R, which will be denoted by ¢,
must equal twice the phase of the numerator in (24), since
the numerator is the complex conjugate of the denominator,
plus =, which is a result of the initial minus sign. Thus,

0
B1d/nw H <

n=1

ﬂ%ﬁ) | <p w1 I8 1> ¢~ B1—a) Inmy (7))

0n

n=1

For the case where b/a=1.831, the TE(; modes in Regions
IT and III have identical low-frequency cutoff points that
correspond to the values v1b=6:6="7.0153.

The numerical results for ¢ show that at the lower limit
of kb, the value of ¢ is equal to = for all values of the param-
eter b/a. Thus, at the lower limit of kb, the cylindrical
partition reflects the incident TE,, mode as if a perfectly
conducting surface spanned the waveguide cross section
at z=0 (see Fig. 2) since a perfectly conducting surface
gives a reflection coefficient of unit modulus and argument
m. As kob increases, the incident TEy; mode is still perfectly
reflected since the modulus of R remains at unity. However,
since the phase of the reflection coefficient decreases with
increasing kb, it appears as though the position of the per-
fectly conducting surface moves. Thus the cylindrical parti-
tion acts like a “virtual” perfectly conducting surface that
spans the entire waveguide cross section whose position is
a function of k¢b and the parameter b/a.
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Fig. 4. Phase of reflection coefficient against dimensionless
frequency for constant values of radius ratio.

RESONANT FREQUENCY OF CAVITY

An open-ended cavity can be constructed by placing two
cylindrical partitions of finite length within a circular wave-
guide as shown in Fig. 5. The partitions need only be long
compared with 1/a; and 1/p; for the formula for the reflec-
tion coeflicient of the infinitely long partition to apply. To
determine the conditions for resonance in the cavity, con-
sider the electric field in the region between the partitions
to be the sum of TE; modes propagating in the positive and
negative z-directions. Thus,

Eg(f‘, z) = AJl(Pﬂ')e‘jﬂ” -+ BJI(I‘Ir)eiﬁlz_

At z=0, the ratio of the reflected wave BJi(I'y) to the inci-
dent wave A4J,(T'yr) must equal the reflection coefficient R.
Similarly, at z=—L, the ratio of the reflected wave
AJ(Twr)e#rE to the incident wave BJy(T'y)e~#Z must also
equal R. Since R is equal to e/, these conditions are simply

— = gi¢

A
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Fig. 5. Model of open-ended cavity.
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and
AL

= ¢,
Be—jﬂlL

It can be easily shown that, if there is to be a nontrivial
solution for amplitudes A and B, ¢ and L must be related
by the equation

eIl — p2i¢—if1L = ()
which has the solution

B1L = ¢ (26)

The required spacing between the partitions to resonate
the TE(;; mode can be found by solving (26) for L, using
the values of ¢ given in Figs. 4(a) and 4(b). The spacing for
the TEg, resonant mode can be found by simply adding
(n—1)2= to ¢ before solving for L.

The numerical results for the TEq; mode are shown in
Figs. 6(a), 6(b), and (7) in the form of curves of L/b against
kob for typical values of the parameter b/a. The range of
resonant frequencies over which the cavity can be tuned by
varying L/b is a strong function of b/a. The value b/a=1.831
gives the maximum tuning range.

The numerical results shown in Fig. 7 are for b/a=2.082.
This value is commonly used in practice since it corresponds
to locating the cylindrical partition at the radius where the
electric field of the TEq mode has its maximum intensity,
i.e., Ji(T'w) has a maximum at r=>5b/2.082. This value of b/a
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was used in the design of the cavity shown in Fig. 1. The
data point in Fig. 7 corresponding to the measured values
of L/b and kb for this cavity indicates that the theoretical
and experimental results are in good agreement.
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Theory of Direct-Coupled-Cavity Filters

RALPH LEVY, SENIOR MEMBER, IEEE

Abstract—A new theory is presented for the design of direct-coupled-
cavity filters in transmission line or waveguide. It is shown that for a
specified range of parameters the insertion-loss characteristic of these fil-
ters in the case of Chebyshev equal-ripple characteristic is given very
accurately by the formula
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where h defines the ripple level, T, is the first-kind Chebyshev polynomial
of degree n, w/wo is normalized frequency, and 6," is an angle propor-
tional to the bandwidth of a distributed lowpass prototype filter. The ele-
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ment values of the direct-coupled filter are related directly to the step
impedances of the prototype whose values have been tabulated. The theory
gives close agreement with computed data over a range of parameters as
specified by a very simple formula. The design technigque is convenient for
practical applications.

INTRODUCTION

NEW TREATMENT of the classic problem of direct-
A coupled microwave filter design is presented. These

filters consist of TEM transmission line or wave-
guide cavities coupled either by series capacitances or by
shunt inductances, as shown in Figs. 1(a) and 1(b), respec-
tively. It will be assumed that the waveguide or transmission
line is of uniform impedance. The more general case is
perhaps of less importance for economic reasons, but it has
been discussed by Young [1], and the theory presented here
may be extended as described by that author.



